
Locality-Adaptive Parallel Hash Joins
using
Hardware Transactional Memory
ANIL SHANBHAG, HOLGER PIRK, SAM MADDEN
MIT CSAIL

History of Parallel Hash Joins

Pictures	from	“Main-Memory	Hash	Joins	on	Multi-Core	CPUs:	Tuning	to	the	Underlying	Hardware”	Balkesen et	al.

Shared Hash Table
based Join

Radix Partitioning
based Join

MIT	CSAIL 2

Motivation

MIT	CSAIL 3

Data can have spatial locality

May arise because of :
◦ Periodic bulk updates => Locality in

date and correlated attributes
◦ Trickle loading in OLTP systems =>

Locality in date
◦ Automatically assigned IDs =>

monotonically increasing counters

From	“Column	Imprints:	A	Secondary	Index	Structure”	Sidirourgos et.	al,	SIGMOD	13

Motivation

MIT	CSAIL 4

Simple experiment: Compare the time of
hash building phase of 3 approaches:
◦ Global hash table using atomics

(Atomic)
◦ Parallel Radix Join (PRJ)
◦ Global hash table with no conc. Control

(NoCC)

NoCC is incorrect; existing approaches
are > 3x slower than it.

Can we do as good as NoCC ?
Yes we can !

Rest of this talk:
◦ Using HTM to achieve better performance
◦ Making HTM-based hash join self-tuning
◦ Adaptively fall back to Radix Join

MIT	CSAIL 5

Hardware Transactional Memory
Sequence of instructions with ACI(D) properties

Intel Haswell uses L1 Cache as staging

MIT	CSAIL 6

Balance Transfer {
Lock()
A_balance -= 10
B_balance += 10
Unlock()

}

Using Global Lock

Balance Transfer {
A.lock() B.lock()
A_balance -= 10
B_balance += 10
B.unlock() A.unlock()

}

Using Fine Grained Locks

Balance Transfer {
_xbegin()
A_balance -= 10
B_balance += 10
xend()

}

Using HTM

HTM vs using atomics

MIT	CSAIL 7

Gap between HTM and NoCC is
the overhead of using HTM

HTM does better than Atomic always.
The larger gap for shuffled data
shows the overhead of doing atomic
operation vs optimistic load/store.

Reducing Transaction Overhead

MIT	CSAIL 8

To reduce the transaction overhead, do multiple insertions per transaction.

Sorted	Data Shuffled	Data

Wrt Data Locality

MIT	CSAIL 9

Our Hash Table So-Far

MIT	CSAIL 10

Adaptive Transaction Size Selection
Transaction size remains a variable that would require manual tuning

Optimal performance hinges on appropriate selection of the transaction size

Our simple adaption strategy:
◦ Start with TS = 16

◦ Process input in batches of 16k tuples and monitor abort rate

◦ If abort rate > high-watermark: TS /= 2

◦ Else if abort rate < low-watermark: TS *= 2

We chose 0.4% as low and 2% as high

MIT	CSAIL 11

Fallback for fully-shuffled data
With sufficient locality, the HTM-based approach performs best

For large shuffle windows, radix join performs better

Key Insight: Larger shuffle windows also coincide with high transaction abort rates

Hybrid approach:
◦ Process first batch of 16k tuples on each thread and inspect abort rate (takes ~ 4ms)

◦ If abort rate > threshold: Switch to do radix join

We found threshold = 4% appropriate for our experiments

MIT	CSAIL 12

MIT	CSAIL 13

Build Phase Performance

MIT	CSAIL 14

Complete	Hash	Join	(with	probe)

Also compare against No-Partitioning Join (implemented by Balkesen et al.) and Sort
Merge Join based on TimSort

HTM-Adaptive matches/beats all the approaches

Conclusion
HTM is great for low-overhead fine-grained concurrency control

HTM-based hash building with adaptive transaction size comes very close to

memory bandwidth for data with locality

Abort rates can be used to detect lack of locality and fallback to radix join

The resulting join algorithm is the best global hash table based approach
◦ Beats radix join by 3x on data with locality

◦ Falls back to radix join in the absence of it.

MIT	CSAIL 15

Thank You J

MIT	CSAIL 16

MIT	CSAIL 17

Performance on Uniform Data

MIT	CSAIL 18

Abort Code ?

